1. Suppose $f:[a,b]\to \mathbb{R}$ is uniformly continuous. Show that f is bounded.

2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous and $\lim_{|x|\to\infty} f(x) = 0$. Show that f is bounded.

3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous. Show that |f(x)| < A + B|x| for some positive constants A and B.

4. Find a couple of sequences of polynomials each converging to a non-polynomial in sup norm over [0, 1] (avoid the one given in the notes).

5. Consider $\mathcal{C}[a, b]$, and a sequence (p_n) such that $p_n = x^n$. Find for what values of a, b, the sequence (p_n) is a Cauchy sequence.