Assignment 4

1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is uniformly continuous. Show that f is bounded.
2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous and $\lim _{|x| \rightarrow \infty} f(x)=0$. Show that f is bounded.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous. Show that $|f(x)|<A+B|x|$ for some positive constants A and B.
4. Find a couple of sequences of polynomials each converging to a non-polynomial in sup norm over $[0,1]$ (avoid the one given in the notes).
5. Consider $\mathcal{C}[a, b]$, and a sequence $\left(p_{n}\right)$ such that $p_{n}=x^{n}$. Find for what values of a, b, the sequence $\left(p_{n}\right)$ is a Cauchy sequence.
